47.光速の測定

 46回の、光の粒子説と波動説の話(粒子性と波動性ではない)のところで、水中での光の速さが空気中の光の速さよりも遅ければ、光の波動説に軍配が上がりそうなことを見た。

 そもそも、光の速さはどうやって測ってきたのだろうか。

 

 まずは、17世紀のガリレオ・ガリレイ(1564-1642)。ガリレオは正しく、光の伝わる速さは有限であると認識し、その速さを測定しようとした。離れた2点に人を立たせ、箱の中にろうそくを立てたものをそれぞれの人が持つ。初めに、こちらの人が箱の覆いを開けて向こうの人にろうそくの火を見せる。向こうにいる人は、こちらの人が覆いを取った t秒後に明かりを見て、明かりを見たら直ちに自分の箱の覆いを開けてこちらの人にろうそくの明かりを示す。こちらの人は、自分が最初に覆いを開けてから t 秒後に相手の光を目にする。この時間から光の速さを割り出そうとした。二人の距離を L [m] とすると、光速 c [m/s] は

    c = 2L / t

で求められるはず。しかしながら、 もちろん、光の速さが速すぎて、測定ならず。1638年の記述である。

 

 17世紀半ば、1676年頃、レーマー(O.C.Romer, 1644-1710)は、木星の衛星イオの公転周期が見かけ上変化していることを観測で明らかにする。木星の陰からイオが顔を出した瞬間の時刻を t1 [s] とし、イオが木星の前を通って裏側に消え、再び姿を現す時刻を t2 [s] とする。そうすると、イオの公転周期 T [s] は、T = t1-t2 となる。ところが、地球と木星の距離は変化しているので、最初にイオが顔を出した時刻での木星と地球の距離を d1 [m]、次に姿を現した時の木星と地球の距離を d2 [m] とすると、光の速さ c [m/s] で情報が伝わってくるので、地球から見て、イオが最初に顔を出した時刻は地球上では t1’ [s] となり、、次に姿を現した時刻は地球上では t2’ とすると

   t1’ = t1 + d1 / c ,     t2’ = t2 + d2 / c

となるはずだ。地球と木星との距離の変化は、地球と木星の相対的な速さを v [m/s] とすると、速さ×時間で動いた距離 d2―d1 になるはずなので、

    d2―d1 = v T

となっているはずだ。こうして、イオが木星の端から顔を出してから木星の周りを1周回って次に姿を現すまでに地球で観測した時間 T’ は

    T’ = t2’ - t1

     = t- t1 + ( d2 - d1 ) / c

     = T + v T / c

     = T ( 1 + v /c )        ・・・(1)

となる。レーマーは丹念に木星のイオの公転周期 T’ の変化を観測し、データを残した。そのデータに基づき、上の式から光速 c を導いたのは、オランダのホイヘンスであった。観測データから v=0 の時を見つけ、真の公転周期 T を見つける。また、v が分かれば、c が分かる。こうして、データを分析して光速 c が求められた。結果は、2.3×108 m/s であり、現在の値(近似的には3.0×108 m/s)とは、ずれているが、桁の108 は合っているのは大したものだ。

 

 18世紀、1728年になるとブラッドレー(J.Bradley, 1693-1762)は恒星の光行差の観測を行う。真上から雨が降ってきても、人が歩いていると、その人には斜め前方から降ってくるように感じられる。それと同じように、遠方の恒星からの光は、地球が動いていることで、本来の角度からずれてやってくるように感じられる。

 

   f:id:uchu_kenbutsu:20160613115235j:plain

   

 

 話を簡単にするため、地球から見て天頂に恒星が位置しているとしよう。真上から雨が降るように、まっすぐ真上から恒星の光はやってくるが、地球が動いているために斜めから光が来るように見える。恒星からやって来る光が天頂となす角度を θ [rad] として、天頂の恒星から地球までに光が届いた時間を t [s] とすると、上の右図のような配置になる。地球の速さは v [m/s] とした。そうすると、三角法を使って

    sin θ= ( vt ) / ( ct ) = v / c  ・・・(2)

となるので、光行差 θ を観測し、地球の速さ v = 2πr / T から、(2)式を使って光速 c が分かるという寸法である。ここで、r は地球と太陽の距離、1億5000万km、T は地球の公転周期 1 年である。

 

 地上で光速を測定したのは、フィゾー(H.Fizeau, 181901896)であった。19世紀半ば(1849年7月)のことである。回転する歯車を使う。歯車の歯の個数を n 個、1秒当たり歯車は N 回転するとしよう。回転する歯車の歯の隙間を狙って光を発する。その光がうまく歯の間をすり抜けて、距離 L [m] 離れたところに置かれた鏡で反射して、戻ってくる。また歯車のところまで来るが、歯車は回っているので、次の歯のところにきていたら、戻ってきた光はそこでさえぎられる。丁度、1/(nN) [s] 経ってから光が戻ってくると、歯に邪魔されず、次の歯の隙間を通って光は戻ってくる。こうして、光速を c [m/s] として、速さ×時間で進んだ距離なので

    c × (1/(nN)) = 2L  ・・・(3)

が得られる。光が往復するので、光が進んだ距離は右辺の 2L となる。こうして、初めてフィゾーが地上で光速を測定した。3.15×108 m/s という速さを得たらしい。

 

 もともと、フィゾーは、パリ天文台のアラゴ(D.F.J.Arago, 1786-1853)の計画をもとに、フーコー(J.B.L.Foucault, 1819-1868)と光速測定の実験をしていた。フィゾーの友人フーコーは、フーコーの振り子フーコーである。4年間共同実験を行っていたが、異なるアイデアを持っていたらしく別々に実験するようになり、それぞれ単独で光速測定を計画した。フィゾーは前述の回転する歯車を用いたが、フーコーは回転する鏡を用いて光速を測定しようとした。先にフィゾーが空気中での光速を地上で測定したとき、それには 8600 メートル以上離れた 2 地点間での実験を要した。フーコーはテーブルトップ、4メートル程度の装置で光速を測定しようとする。

      

        f:id:uchu_kenbutsu:20160613115407j:plain

 

 図のように、光源から回転する鏡、回転鏡に向かって光を発する。この光が回転鏡M1で反射し、回転鏡を取り囲むように設置されている球面鏡 M2で 反射する。Mと M2の距離を L1 [m] としよう。光がここを往復する時間 t [s] は、

    t = 2L1 / c

だ。往復だから、L1 の2倍。光が球面鏡で反射されて回転鏡に戻ってきたとき、回転鏡は少し回転している。回転鏡の回転の角速度を ω [rad/s] とする。すると、光が2つの鏡の間を往復した時間 t のあいだに、回転鏡は角度

    Δθ=ωt = 2L1 ω/ c

だけ回転している。球面鏡から戻った光は、少し回転した鏡 M1で再び反射される。回転していなかったときには光は来た道を帰るが、鏡が Δθ [rad] だけ回転しているので、すこしずれて反射され、図の点線の道をたどる。どれだけずれるかというと、回転鏡に入射するときに入射角が Δθ [rad] ずれていて、反射の法則から反射角と入射角は同じだから、反射する際にも反射角が Δθ [rad] ずれる。あわせて 2×Δθ [rad] ずれて戻っていく。光源にまで戻ると明るくて見えないので、途中で半透明の鏡を置いておいて、図のようにスクリーンに誘導する。回転鏡が回転しなかったときには光はスクリーン上のA点に来るはずだが、回転しているのでB点にやってくる。そのずれ Δx [m]は、回転鏡からB点までの距離を L2 [m] とすると、

    Δx = L2 ×2×Δθ

      = 4 L1 L2 ω / c   ・・・(4)

と得られる。こうして、回転鏡が回転していないときと回転しているときでのスクリーン上に来る光の位置のずれ Δx [m] を測定すると、(4)式から、光の速さ c [m/s] が測定される。

 フーコーは毎秒8000回転する回転鏡で、2.98×108 m/s という光速の値を得た。かなり正確である。

 また、回転鏡と球面鏡の間に水で満たした管を置いて、そこを光が通るようにし、水中での光の速さは空気中での光の速さからどれだけずれるかを調べた。そうして、水中の方が空気中より光の速さは遅いことを示し、46回で述べた光の波動説の正しさを示した(粒子説では水中の方が空気中より光速は速いはずだった)。友人のフィゾーはその7週間後に自身の実験でフーコーと同じ結論を得ている。

 パリ天文台のアラゴは両人の結果を喜んだそうだ。

 

    f:id:uchu_kenbutsu:20160613115533j:plain

 

 パリに住んでいたとき、パリ天文台のそばのアパルトマンを借りて暮らしていた。モンパルナス大通り(Boulevard Montparnasse)とラスパイユ大通り(Boulevard Raspail)に挟まれた区画であったが、天文台が近くにあったので、少し行けば「アラゴ大通り(Boulevard Arago)」があった。シャルルドゴール空港からモンパルナスまでエールフランスの空港連絡バスに乗るとアラゴ大通りを通る。また、パリ天文台を通る子午線上には、ところどころ、写真のように南北を示すオブジェが埋められている。そこにはARAGO と記されている。